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Abstract We point out that the dissipative force-free DuEng oscillator and Holmes-Rand 
nonlinear oscillator admit infinite dimensional symmetry algebras for certain parametric choices 
for which the systems become integrable. Fmm the nature of the symmetry vector fields one 
can also write dawn the integrals of motion for the above systems.. b addition we point out 
that the other dissipative systems discussed in the literature also admit infinite dimensional Lie 
algebras. 

1. Introduction 

An important problem in the study of nonlinear dynamical systems is to find under what 
conditions a given dynamical system is integrable or not. In order to identify the integrable 
parameters of the given system, particularly Hamiltonian ones, three different techniques 
have widely been used, namely Painlev.6 analysis, Lie symmetry analysis and direct method 
of finding involutive integrals of motion [l-31. Among them, the group theoretical method 
is of special significance. In particular the study of generalized Lie symmetries of nonlinear 
Hamiltonian systems has attracted much attention in recent years [4] because it not only 
gives the integrable parameters along with the integrals of motion but also gives the separable 
coordinates whenever they exist [5 ] .  

As far as nonlinear non-Hamiltonian systems are concerned much less is known even 
though some techniques have been proposed to find the integrable cases of such systems 
[2,6,7]. Here also the study of Lie symmetries plays a prominent role because once again it 
not only gives the integrable parameters of the problem but also gives the associated integrals 
of motion in a straightforward fashion. Recently the integrability properties of some of the 
nonlinear dissipative systems such as the Lorenz model, two-dimensional Lotka-Volterra 
equation and three-wave interaction problem have been studied through Lie symmetry 
analysis 18-lo]. In this paper we wish to investigate the invariance and integrability 
properties of two physically interesting dissipative nonlinear systems, namely the force-free 
Duffing oscillator and the Holmes-Rand nonlinear oscillator for which symmetry analysis 
has not been performed before as far as our knowledge goes. Our motivation to study the 
above systems is twofold. Our first aim is, apart from finding the Lie symmetries and its 
associated integrals of motion of a dynamical system in a conventional way, to show that 
one can generate an infinite sequence of symmetries and infinite dimensional Lie algebra 
from the basic vector fields of lowm-order symmetries which have already been found. 

Our second goal is to bring out the unexplored invariance properties of  the Duffing and 
Holmes-Rand oscillators through Lie symmetry analysis. For the force-free Duffing case, 

1929 0305-4470/95/071929+14$19.50 @ 1995 IOP Publishing Ltd 
~~ 



1930 

we show that an infinite number of symmeixies exist exactly for the parametric choice for 
which the Painlev6 property is found to hold and explicitly integrable. On the other hand, 
for the Holmes-Rand oscillator, even though it admits movable algebraic branch points 
[ll], we point out through our Lie symmetry analysis that there exists a parametric choice 
admitting an infinite dimensional symmetry algebra and integral of motion. 

We have also shown that similar infinite dimensional Lie algebras exist for other 
nonlinear dissipative systems discussed in the literature such as the two-dimensional Loth- 
Voltena equation, three-wave interaction problem and the Lorenz system. For example 
Baumann and Freyberger [9] have shown that the Lotka-Volterra equation admits a three- 
parameter symmetry group (up to quadratic power in the variable y) for a specific parametric 
choice. However, on closer examination we have found a fourth vector field Sa, which is 
also of degree two in the variable y, exists. These four vector fields are then found to 
give rise to an infinite dimensional symmetry algebra as in the previous cases. Similarly 
to the case of the three-wave interaction problem, it is completely integrable for only one 
parametric choice and partially integrable for four other parametric choices [lo]. In the 
completely integrable case we find that the system admits a six-parameter group and in 
the partially integrable case it admits only a two-parameter group (up to quadratic power 
in the third variable 2) .  Now constructing the commutator algebra between the six vector 
fields in the completely integrable case we have shown that one can generate an infinite 
sequence of symmetries and functionally dependent integrals of motion without explicitly 
solving the invariance condition. Recently the Lie symmetries and the associated integrals 
of motion of the Lorenz system have: been investigated by Sen and Tabor [8]. For the 
completely integrable case  they have reported that the system admits a four-parameter 
group of symmetries and in the partially integrable cases it admits two parameter groups 
(up to cubic power in the variable y). In the completely integrable case, we find that there 
are two more vector fields compatible with the above ansatz and by including these two 
vector fields we have shown that one can generate higher-order symmetries and an infinite 
dimensional Lie algebra. 

The plan of the paper is as follows. In appendix A we briefly summarize the invariance 
condition (used in the text) for a given set of coupled first-order ordinary differential 
equations under a one-parameter Lie group of transformations. In section 2 we show 
that the force-free Duffing oscillator admits a four-parameter Lie symmetry group (up to 
cubic power in the momentum variable y) by solving the invariance condition. Then by 
constructing the commutator algebra between the four vector fields a new vector field which 
is the fifth power in the variable y is obtained. Now including the new vector field with the 
previous four vector fields and constructing the commutator algebra between them again we 
find that one can generate new vector fields of higher-order symmetries and higher-order 
functionally dependent integrals of motion without solving the invariance condition. This 
procedure can be continued ad infinitum, thereby generating an infinite dimensional Lie 
algebra. In section 3 we report the Lie symmetries and integrals of motion for the Holmes- 
Rand nonlinear oscillator. In this case also we have generated an infinite dimensional Lie 
algebra for a specific choice of the parameters. In section 4 we briefly point out how the 
other nonlinear dissipative systems discussed in the literature such as the two-dimensional 
Lotka-Volterra equation,' the threewave interaction problem and the Lorenz system admit 
infinite dimensional Lie algebras in the completely integrable cases. In section 5 we present 
our conclusions. 

M Senthil Wan and M L a k s h n a n  
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2. Duffing oscillator 

The equation of motion of the force-free Duffing oscillator is 

f + C l i  + czx + x 3  = 0 (2.1) 

where c1 and c2 are parameters and the dot denotes differentiation with respect to time. 
System (2.1) is a ubiquitous model which arises in many branches of science and engineering 
such as the study of oscillations of a pendulum, oscillations of a buckled beam and so on 
WI. 

2.1. Lie symmetries 

Equation (2.1) can be written as the following two first-order coupled ordinary differential 
equations: 

A:X = y 

y = - ( c l y + c z x + X 3 ) .  (2.2) 

Applying the invariance condition (A.6) to the system (2.2) we get 

ill = 02 

i lz  = -rlll(cz + 3x2, + c1021. (2.3) 

As equation (2.3) cannot be explicitly solved, we make the ansatz that q1 and q2 are 
polynomial in the variable y .  In fact, we begin with a linear form in y .  then proceed 
to a quadratic form and finally we assume a cubic form in y from which we succeed in 
identifying a non-trivial infinite dimensional Lie algebra of symmetry vector fields which 
can be associated directly with the integral of motion for a suitable parametric choice.. For 
simplicity we present only the calculations for the cubic form, by assuming 

(2.4) 

where the ai’s and bi’s, i = 1 , 2 . 3 , 4  are functions o f t  and x alone. 

linear partial differential equations. 

Q ~ = O  bqX=O (2 .5~)  

a4r + a 3 ~  - 3c1a4 - 64 = 0 (2.5b) 

Substituting (2.4) in (2.3) and equating various powers of y we get the following set of 

b4t + biz - 2ci bq + (c2 + 3x2)a4 = 0 
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Solving (2.5a)-(2.5e) we get 

a4 = a41(t) ( 2 . 6 ~ )  

a3 = [b41 + 3cla41 - b4llX + a3l(t) (2.66) 

E) az = a41 - + [4c1b41 + 2c2a41 - 2b41 + 6c:a41 - 5 C l U 4 1 f  a411 

f[b3l +2Cla3l - U 3 1 l X f ~ Z l ( t )  (2.6~) 
(3 

al = [-$&I f4cla41 + a 4 1 1  (:) f a 3 1  (f) 
11 2 . f [-!ja41 + 3 C l h 1  - (2C2 f TCl)a41 f (5ClCz f 3C?)a41 f $641 

- %CI&I + ( 3 4  + 3~z)b411 

4- [a31 - 3 C l U 3 1  + (kf + Cz)a31 - 2631 + 2clb311 (;) 
- (3 

+ Ib21 + c1a21 - UZllX + a1 I O )  (2.64 
b4 = b41 (0 (2.6e) 

b3 = -U41X3 + 1 2 ~ 1  b41 - CZa41 - &I]X + b31 ( t )  (2.6f 1 

bz = [4U41-10Cl~41] (:)-a3~'+[641 -3c16~1+(2~~+2c:)b41+2~2ri41 -4c1c~a411 (;) 

bl = -;..I - + I - Z Q 1  5 .' + 1oC1641 - ( ~ C Z  f9~:)a41 + 641 - 2~1b411 G) (3 
(3 

2 (S) 
r3 

+ 1 ~ 1 9 1  - C Z ~ N  - 6 d x  + bzl(t) (2.6g) 

2 + [4b31 - 6 ~ 1 ~ 3 1  - b31l - + [ - $ c z ~ I  + (9/2)ClCzb41 - ~ C ~ C Z Q I  

1 ''_ 3 .' - ~ b 4 1  + 2~1b41 - (C, + 2Cz)641 + ~ C I C Z ~ ~ I  - ~ c & + I  - 3~211 

(2.6h) 

where QI, a319 @I, nil, b41, b31. bzi and bll are functions of time and the dot denotes 
differentiation with respect to time. Substituting (2.6~-h) in (2.5e) and equating various 
powers of x we get a set of linear differential equations involving the functions ~ 4 1 ,  a31, u ~ ~ ,  
all ,  b41, b x ,  bzl and bll. Solving them we  get non-trivial forms for the above functions 
only for the parametric choice 

fIb31 -clbsr f2c2&1-2clcz~sl f ~ z b 3 1 l  - -[CZUZI +bz11~+61i(t) 

zc; = 9c2. (2.7) 
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For this choice the associated functions become 

all = o  bll = o  
a21 = A + Bexp[fclt] 1 1 bzl = -ACI - gclB e ~ p [ ~ c l t ]  

a31 = O  b3l = O  
= Cexp[$clt] + ~ e x p [ $ c l t ]  

b41 = -fcl exp[$clr] - D C ~  exp[$clt] (2.8) 

where A ,  B, C and D are arbitrary constants. 
Using equations (2.8) and (2.6) in equation (2.4), we finally get a four-parameter 

symmetry group for the forcefree Duffing oscillator (2.2). The corresponding four vector 
fields are easily seen to be 

where X is the dynamical vector field. It may be noted that for exactly the same parametric 
choice (2.7) the Painled property holds [13] for equation (2.1). 

2.2. Integral of motion 

The integral of motion associated with the vector fields (2.9) can be found using the 
procedure adopted by Sen and Tabor [SI for the Lorenz system. Since the vector fields 
S3 and S4 are not functionally independent we can use them to generate the integral of 
motion. We can easily check that the function f ( x ,  y, t )  defined by 

s3 = f ( x , r , t ) &  ~ S 4 = f ( & Y , w z  (2 loa) 

where 

f = exp[$clrl[y* + iclxy + $2 + $c:x2] (2.10b) 

is an eigenfunction of the dynamical vector field, 

that is 

X ( f )  = -;c1 f. (2.1 1) 

The integral of motion Z associated with a dynamical system satisfies the equation 

(2.12) 
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where X is the dynamical vector field, we can write the above equation as 

d I  
(2.13) _ -  - zr + X(Z)  = 0. 

dt 

Hence if we define 

(2.14) 

then it follows that dI/dt = 0. Thus the function f given in equation (2.10) turns out to 
be the integral of motion associated with the system (2.2). 

We can use the integral of motion Z associated with the dynamical system, equation (U), 
to find the explicit solution as follows. By using the transformations 

I = f = exp[$clt][y2 + gclxy + 4x4  + qclx 1 2 2  1 

W = (3/J2cl)  exp(clt/3) Z = -JZexp(-clt/3) (2.15) 

equation (2.1) for the parametric choice 2 4  = 9cz can be written as 

W”+ w3 = 0 ’ =/dz. (2.16) 

This can obviously be integrated as 

WO + 4 w 4  = i. (2.17) 

Reverting to the old variables, it is easily seen that i = I. Equation (2.17) can be integrated 
straightaway to give the Jacobian elliptic function solution [13] 

x ( t )  = (,/2c1/3)y exp(-clt/3)cn(yv; k )  U = -J2exp(-clt/3) - ZO (2.18) 

where y and ZO are arbitrary integration constants and k2 = i. 
2.3. ZnBnite dimensional Lie algebra 

We can easily verify that the commutator algebra of the vector fields (2.9) is 

~, 

(2.19a) 

Here the new vector field Ss is defined as 

4 2 2  SS = lexp[Tcltl[y + 5 ~ ~ x y  + $x4 + $ c ~ x ~ I } ~ s ~  = z2s2 

which is of fifth degree in the variable y. 

(2.20) 
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Proceeding in a similar manner we can compute the commutator algebra including the 
new generator S5. In this case we get the following relations in addition to the previous 
ones: 

where S6 = 13Sz, which tums out to be a new generator. 
Proceeding again, we obtain the new commutators as 

where 

(2.22b) 

One can continue this process ad infinitum, introducing a new generator at each stage thereby 
leading to an infinite dimensional Lie algebra. Thus considering generators IS,, . . . . S,], 
where m is arbitrary, we find the commutator [S,, S3] leads to a new generator &,+I: 

4 S7 = I SI. 

We also note that this procedure does not include the generators P " 1 ,  m > 1, which 
are also functionally dependent symmetry generators. Adjoining them with the previous 
set SI, SI, . . . , S,, we obtain the complete symmetry of degree m in the variable y for the 
equation (2.1). 

Thus we find that only for the parametric choice 2c: = 9C2, the infinite dimensional 
Lie algebra of vector fields preserves the original flow, the consequence of which is that 
the system is completely integrable. In all other cases, one obtains only the nivial time 
translational symmetry and the system becomes non-integrable. 

3. Holmes-Rand nonlinear oscillator 

The Holmes-Rand nonlinear oscillator arises in certain flow induced structural vibration 
problems in which the structural nonlinearities act to maintain overall stability. In standard 
variables, it takes the form [14] 

x + (a + P X Z ) ,  - yx + 2 = 0 (3.1) 

where a, f3 and y are parameters. The system also has a close resemblance to the Duffing- 
van der Pol class of nonlinear oscillators [Ill.  
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3.1. Lie symmetries and integral of motion 
Rewriting the above equation into a set of two first-order equations we get 

M Senthil Velan and M Lakshmnan 

x = y  

y = -(a + Bx2)y + y x  - x 3 .  (3.2) 
The invariance requirement of (3.2) under the infinitesimal transformations (A.2) can 

be written as 

(3.3) 
As before, we make an ansatz for 171 and a2 so that they are polynomials in the variable 

y. for example quadratic to have non-trivial set of Lie vector fields: 

(3.4) 
where the ai’s and bj’s, i = 1 ,2 ,3 ,  are functions o f t  and x alone. Substituting this form in 
(3.3) and equating various powers of y we get the following set of linear partial differential 

(3.54 

(3.5b) 

a2 - Z(a + j?x2)a3 + q, - b3 = 0 

bzx - (E + px2)b3 + bsr - ( y  - 3x2)u3 + 2pxa2 = 0 

bix + 2 1 ~ ~  - x3)b3 + b2t - ( y  - 3X2)a2 + 2pxai = 0 

( 3 5 )  

(3.54 

3 ai, - (Or + Bx2)az + 2 ( ~ x  - X  )a3 + au - bz = 0 

+ ( Y X  - x3)a2 - bl = 0 

bic + (YX  - x3)b2 - ( y  - 3 x ’ ) ~ i  + (a + Bxz)bi = 0. (3.5e) 

As described in the previous example, solving (3.5aK3.5e) consistently we obtain 
non-hivial forms for the functions al. a2. aj,  bl, b2 and b3 only for the parametric choice 

a = -  4 and y = - ( - $ )  

B 
In this case we get a four-parameter symmee group with the associated vector fields: 
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where 

is now the dynamical vector field associated with (3.2). 
As the vector fields S3 and S4 are not functionally independent we can use them to 

generate the integral of motion as in section 2.2 and we can conclude that the integral of 
motion for the equation (3.2) for the choice a = (4/j3) and y = -(3/p2) is 

(3.8a) 

Rewriting this as, we end up with a first-order inhomogeneous Abel's equation: 

i + ; f ix3 + (I/B)X = 1exp[-(3/~)t]. (3.8b) 

Interestingly the Holmes-Rand nonlinear oscillator does not pass the Painlev6 test as it 
admits a movable algebraic branch point (see equations (3.8)) and a local Laurent expansion 
intheform[l l ]  

where T = (t-to) and to and a3 are arbitrary constants. However, it has already been pointed 
out that there exist second-order systems which are nonPainlev6 but which nevertheless 
possess one integral of motion and hence are integrable [2,15]. Our investigation shows 
that the choice (3.6) of the Holmes-Rand nonlinear oscillator belongs to the above category. 

and 

(3.10a) 

(3.10b) 

where 

which is cubic power in the variable y. 
Proceeding in a similar manner we can evaluate the commutators involving S,, namely 

[S5, SI1 = ( 8 / p ) S 5  [S57 $21 = 0 [S5, = (8/@)S6 S4I 0 (3.11) 

where S6 = 13Sz which turns out to be a new generator. As described in the previous 
section 2.3 we can continue this procedure ad infinitum. Thus considering generators 
[S,, . . . , S,], where m is arbitrary, we find that through the commutator 

(3.12) [S3, S,] = (1/8)(7 - 3m)Z"-2Sz = S,+I 

a new generator is introduced. 
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4. Infinite dimensional Lie algebras of other dissipative systems 

In this section we wish to point out that the other dynamical systems discussed in the 
literature also admit infinite dimensional Lie algebras. For this purpose, we have considered 
three physically important nonlinear dissipative systems namely the two-dimensional Lotka- 
Volterra equation, the three-wave interaction problem and the Lorenz system. 

4. I .  Two-dimensional Lotka-Volterra equarion 

The symmetry properties of the two-dimensional Lotka-Volterra model 

M Senthil Velun and M Lakshman  

X = U X - X ~  j = x y - b y  (4.1) 

have been discussed by Baumann and Freyberger recently 191. By assuming the 
infinitesimals to be quadratic in y, they have found that equation (4.1) in a second- 
order version admits a three-parameter symmetry group provided the parametric condition, 
a + b = 0, is satisfied. The vector fields found by Baumann and Freyberger are 

a a 
SI = (ax - xy)- + (uy + xy)- ax ay 

a [ ax 
SZ = exp[-at] (xy)- - (xy)- 

S, = exp[-atl(x + y)Sz = IS2 (4.2) 

where I = exp[-at](x + y). 

for (4.1) exists. Its form is 

S4 = exp[-at] 1.2 - (1/a)x2y - xy2]- + [(l/a)xZy + ZXY + (l/a)xy2 + yz]- 

However, on closer examination, one also finds that a fourth vector field quadratic in y 

(4.3) 

a I ax 

and this helps us to generate an infinite dimensional Lie algebras in the present case. 
Now the commutator algebra between the vector fields SI, SZ, S3 and S4 is 

and 

15, = ZaSs (4.4b) 

where S5 = 12S2, which turns out to be a new vector field (cubic in the variable y). Now 
including the generator Ss with the previous four generators and proceeding further, we 
can generate infinite sequence of symmetries and an infinite dimensional Lie algebra as 
described in the previous two sections. 
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4.2. Three-wave interaction problem 

The Lie symmetries and their associated integrals of motion of the threewave interaction 
problem have been studied by Almeida and Moreira [IO]. In standard variables, the equation 
of motion can be written as 

x =ax -by + z - 2yz 

y = a y  + l a b  + b y  

i = -22 - 2xz (4.5) 

where a and b are parameters. The above model is completely integrable for only one 
parametric choice, that is a = -1, b = 0, in the sense that here it admits two functionally 
independent integrals of motion and thereby the system can be reduced to a first-order 
equation which can be integrated by quadratures. Furthermore, (4.5) is also partially 
integrable for four other parametric choices where it admits only one integral of motion 
[lo, 161. 

For the completely integrable case the vector fields associated with (4.5) can be found 
(as in sections 2 and 3) to be (where the infinitesimals q; = 1,2,3 are assumed to be up to 
quadratic in the variable z, which is sufficient in this case for a non-trivial set of Lie vector 
fields) [IO]: 

a a a 
ax ay az sj = (z - x - 2y3- i. (2xy - y)- - (2x2 + 22)- = x 

S, = e2(z + x2 + A x  = ezr(z + xz + y2)s1 

~4 = yze3’x = yze3‘~1 

S, = ez‘(z + x2 + y2)sZ 

s6 = yze”~2. (4.6) 

Now constructing the commutator algebra between the above six vector fields, we get 

[SI, Sz] -sz [SI, &] = -2s3 [SI, &] -3s4 

[SI, SSl = -3s5 [SI, s6l -4s6 [SZ, s3l = s5 

[SZ, s41 = s6 [SZ, SSl = 0 [SZ, = 0 . 

[s33 s4l = s7 [s3, SSl = -3s8 [s3, s6i = -4s9 

[s,, ssi = -3s9 [s,, s61 = o (4.7) 

where &(= Z~ZZSI), &(= and S9(= Z,ZzSz) are new vector fields which are cubic 
in the variable z. Thus in this case also we have generated three new vector fields without 
explicitly solving the invariance condition. Now including the new vector fields with the 
previous six vector fields and computing the commutator algebra between them again we 
can generate infinite sequence of symmetries from the basic vector fields Sl, SZ, S3, S4, S5 
and s6. 

Finally, for the case of partially integrable cases, equation (4.5) admits only two mutually 
commuting vector fields and no interesting Lie algebraic structures exist here. 
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4.3. Lorenz system 

Recently Sen and Tabor have reported the Lie symmetries and the symmetry reductions of 
the Lorenz model 181. The Lorenz equations are 

M Senthil Velan and M Lukshmanan 

x = o(y - x )  y = -xz + r x  - y  z = -ny- bz (4.8) 

where U, r and b are real positive parameters. Sen and Tabor have shown that the 
equation (4.8) in its third-order version admits non-trivial Lie symmetries (where the 
infinitesimals vi, i = 1,2,3 are assumed to be up to cubic in one of the variable y to 
bring out all the known integrable cases) for five parametric choices. Among them, one 
turns out to be a completely integrable case and the remaining four turn out to be partially 
integrable cases. For the completely integrable case, U = 1/2, b = 1 and r = 0, the 
associated vector fields have been given as 

1 a a a 
S, = z(y - X I -  - ( x z +  y)- - (xy  -z)- = x 

ax ay az 

However, on closer examination we have found that for this case of (4.8) there exist two 
more vector fields, say Ss and S6, in which the infinitesimals are cubic in y, 

(4.10) 

Now constructing the commutator algebra between the six vector fields one can generate 
higher-order symmetries, say fourth power in the variable y in the infinitesimals qj, 
i = 1 ,2 ,3  as in the previous cases. Now including the newly constructed vector field 
with the basic six vector fields and proceeding again as described in the previous sections 
one can generate the infinite sequence of symmetries and the associated infinite dimensional 
Lie algebra. 

5. Conclusions 

In this paper we have analysed the invariance and integrability properties of the force-free 
Duffing oscillator and Holmes-Rand nonlinear oscillator from the Lie symmetries point 
of view. We have found the integrable parameters along with the integrals of motion 
for the above two systems. We have also shown that the above two dynamical systems 
admit infinite dimensional Lie algebras in the integrable cases. We have further pointed out 
that the other dynamical systems, discussed in the literature, such as the two-dimensional 
Lotka-Volterra model, the three-wave interaction problem and the Lorenz system, also admit 
infinite dimensional Lie algebras for the completely integrable cases and finite dimensional 
Lie algebra for partially integrable cases. On the other hand, for the non-integrable systems 
one ends up with only a trivial time translational symmetry vector field alone, at least for 



Lie symmetries and infiite-dimensional Lie nlgebras 1941 

the types of system we have considered here. Thus at the Lie algebra level, integrable 
and non-integrable systems, corresponding to two and three coupled first-order ordinary 
differential equations, seem to possess distinct characters which we expect to be true in 
higher dimensions as well. Further, the structure of the infinite dimensional Lie algebra of 
the different nonlinear dissipative systems we have studied here may apparently appear to 
be the same, but they are distinguished from each other in the form of structure constants 
and the form and number of multiplier functions I, I,, 1 2  etc (cf equations (2.23), (3.11), 
(4.4) and (4.7) and (2.14) and (3.8a)) in each one of the cases. Finally from the structure 
of the Lie algebra, it should be possible to generate the original vector fields also, when 
the basis vector fields are given. For example with specific structure constants, multiplier 
functions and commutation relations (cf equations (2.19) or (3.10) and (2.14) or (3.8a)) and 
solving them consistently with a basis of vector fields one can find the original vector fields, 
besides the integrals of motion. Thus, it appears that the Lie algebraic structure which has 
been brought out for the integrable nonlinear dissipative systems considered here contains 
much information about the flows, their integrable nature as well as the symmetry vector 
fields. It is clear that the invariance analysis of differential equations can bring out many 
interesting aspects in the study of nonlinear dissipative systems. 
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Appendix A 

Let us consider a set of first-order coupled nonlinear ordinary differential equations 

Ai:(xj,Xj)=O i = 1 , 2  ,..., N ,  j = 1 , 2  ,..., M. (A.1) 

Now we look for the invariance of the equation (A.l) under a one-parameter infinitesimal 
point transformations of the form 

Xi =xi  +6qj( f ,xc)  i = 1 , 2 , . .  _,  M 

T = t + € 6 0 ,  x i ) .  

The corresponding infinitesimal generator is 

a a v =.$(t,xi)- +r7@,4) - .  
at  axi (-4.3) 

We will take 5 = 0 without loss of generality. Then the evolutionary vector field takes the 
form 

a v =vi-. ax; (-4.4) 
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Since we are interested in obtaining the Lie symmetries of the set of coupled ordinary 
differential equations, (A.]), which are of first order in nature, we must know the first 
prolongation of the vector field V (for more details and proof for this statement, see for 
example [I71 p 106). The associated first extended operator is 

M Senthil Velan and M Lakshmanan 

where iji = Qqi,  i = 1,2 and 4 is the total differential operator. An operator V is said to 
be the generator of a one-parameter symmetry group [17, IS] for (A.l) if, whenever (A.l) 
is satisfied and 

Substituting the specific equation of motion (A.l) in (A.6)' k d  solving it consistently 

We finally note that second or higher prolongations of the vector field V do not lead to 
we get the Lie symmetries vi. 

any new symmetries for equations (A.1). For example, the second prolongation 

where iji = dZqi/dt2, i = 1,2, acting on the system (A.1) leads to the invariance condition 

which is the same as the right-hand side of (A.6). A similar result holds for higher 
prolongations too. 
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